Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Med Chem ; 67(6): 4707-4725, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38498998

ABSTRACT

Despite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of M4K2009, a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2. This rigidification strategy led us to the discovery of the ether-linked inhibitors M4K2308 and M4K2281 and the amine-linked inhibitors M4K2304 and M4K2306, each with superior potency against ALK2. Notably, M4K2304 and M4K2306 exhibit exceptional selectivity for ALK2 over ALK5, surpassing the reference compound. Preliminary studies on their in vivo pharmacokinetics, including blood-brain barrier penetration, revealed that these constrained scaffolds have favorable exposure and do open a novel chemical space for further optimization and future evaluation in orthotopic models of DIPG.


Subject(s)
Amines , Ethers , Humans
2.
Cancer Res ; 84(7): 1084-1100, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38266099

ABSTRACT

Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE: In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.


Subject(s)
Leukemia, Myeloid, Acute , Oxidative Phosphorylation , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Apoptosis
3.
J Biol Chem ; 299(10): 105218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660910

ABSTRACT

Human G protein-coupled receptor 35 is regulated by agonist-mediated phosphorylation of a set of five phospho-acceptor amino acids within its C-terminal tail. Alteration of both Ser300 and Ser303 to alanine in the GPR35a isoform greatly reduces the ability of receptor agonists to promote interactions with arrestin adapter proteins. Here, we have integrated the use of cell lines genome edited to lack expression of combinations of G protein receptor kinases (GRKs), selective small molecule inhibitors of subsets of these kinases, and antisera able to specifically identify either human GPR35a or mouse GPR35 only when Ser300 and Ser303 (orce; the equivalent residues in mouse GPR35) have become phosphorylated to demonstrate that GRK5 and GRK6 cause agonist-dependent phosphorylation of these residues. Extensions of these studies demonstrated the importance of the GRK5/6-mediated phosphorylation of these amino acids for agonist-induced internalization of the receptor. Homology and predictive modeling of the interaction of human GPR35 with GRKs showed that the N terminus of GRK5 is likely to dock in the same methionine pocket on the intracellular face of GPR35 as the C terminus of the α5 helix of Gα13 and, that while this is also the case for GRK6, GRK2 and GRK3 are unable to do so effectively. These studies provide unique and wide-ranging insights into modes of regulation of GPR35, a receptor that is currently attracting considerable interest as a novel therapeutic target in diseases including ulcerative colitis.

4.
Biomaterials ; 297: 122121, 2023 06.
Article in English | MEDLINE | ID: mdl-37075613

ABSTRACT

Tumour-associated macrophages are linked with poor prognosis and resistance to therapy in Hodgkin lymphoma; however, there are no suitable preclinical models to identify macrophage-targeting therapeutics. We used primary human tumours to guide the development of a mimetic cryogel, wherein Hodgkin (but not Non-Hodgkin) lymphoma cells promoted primary human macrophage invasion. In an invasion inhibitor screen, we identified five drug hits that significantly reduced tumour-associated macrophage invasion: marimastat, batimastat, AS1517499, ruxolitinib, and PD-169316. Importantly, ruxolitinib has demonstrated recent success in Hodgkin lymphoma clinical trials. Both ruxolitinib and PD-169316 (a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor) decreased the percent of M2-like macrophages; however, only PD-169316 enhanced the percentage of M1-like macrophages. We validated p38 MAPK as an anti-invasion drug target with five additional drugs using a high-content imaging platform. With our biomimetic cryogel, we modeled macrophage invasion in Hodgkin lymphoma and then used it for target discovery and drug screening, ultimately identifying potential future therapeutics.


Subject(s)
Hodgkin Disease , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Cryogels , p38 Mitogen-Activated Protein Kinases/metabolism , Extracellular Matrix/metabolism
5.
J Med Chem ; 66(7): 5041-5060, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36948210

ABSTRACT

DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 µM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 µM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ligands , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/chemistry
6.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793435

ABSTRACT

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

7.
J Biol Chem ; 298(10): 102421, 2022 10.
Article in English | MEDLINE | ID: mdl-36030052

ABSTRACT

Recent studies identified a missense mutation in the gene coding for G protein-coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse ß-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support of these findings, we demonstrate GRK6 rescue experiments in knockdown cells restored insulin secretion after glucose treatment. The altered insulin profile appears to be caused by changes in the proprotein convertases, the enzymes responsible for proinsulin to insulin conversion, as GRK6 knockdown resulted in significantly reduced convertase expression and activity. To identify how the GRK6-P384S mutation found in T2D patients might affect insulin processing, we performed biochemical and cell biological assays to study the properties of the mutant. We found that while GRK6-P384S was more active than WT GRK6, it displayed a cytosolic distribution in cells compared to the normal plasma membrane localization of GRK6. Additionally, GRK6 overexpression in MIN6 cells enhanced proinsulin processing, while GRK6-P384S expression had little effect. Taken together, our data show that GRK6 regulates insulin processing and secretion in a glucose-dependent manner and provide a foundation for understanding the contribution of GRK6 to T2D.


Subject(s)
Diabetes Mellitus, Type 2 , G-Protein-Coupled Receptor Kinases , Insulin , Proinsulin , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Glucose/pharmacology , Insulin/metabolism , Proinsulin/genetics , Proinsulin/metabolism , G-Protein-Coupled Receptor Kinases/genetics , G-Protein-Coupled Receptor Kinases/metabolism , Cell Line
8.
Nat Rev Chem ; 6(4): 287-295, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35783295

ABSTRACT

One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.

11.
J Mol Biol ; 433(23): 167294, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34662547

ABSTRACT

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.


Subject(s)
Coatomer Protein/genetics , Coatomer Protein/metabolism , Drug Discovery , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Drug Discovery/methods , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects
12.
J Med Chem ; 64(20): 15017-15036, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34648286

ABSTRACT

USP5 is a deubiquitinase that has been implicated in a range of diseases, including cancer, but no USP5-targeting chemical probe has been reported to date. Here, we present the progression of a chemical series that occupies the C-terminal ubiquitin-binding site of a poorly characterized zinc-finger ubiquitin binding domain (ZnF-UBD) of USP5 and competitively inhibits the catalytic activity of the enzyme. Exploration of the structure-activity relationship, complemented with crystallographic characterization of the ZnF-UBD bound to multiple ligands, led to the identification of 64, which binds to the USP5 ZnF-UBD with a KD of 2.8 µM and is selective over nine proteins containing structurally similar ZnF-UBD domains. 64 inhibits the USP5 catalytic cleavage of a di-ubiquitin substrate in an in vitro assay. This study provides a chemical and structural framework for the discovery of a chemical probe to delineate USP5 function in cells.


Subject(s)
Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
13.
Oncoimmunology ; 10(1): 1943234, 2021.
Article in English | MEDLINE | ID: mdl-34589290

ABSTRACT

TRAF1 is a pro-survival adaptor molecule in TNFR superfamily (TNFRSF) signaling. TRAF1 is overexpressed in many B cell cancers including refractory chronic lymphocytic leukemia (CLL). Little has been done to assess the role of TRAF1 in human cancer. Here we show that the protein kinase C related kinase Protein Kinase N1 (PKN1) is required to protect TRAF1 from cIAP-mediated degradation during constitutive CD40 signaling in lymphoma. We show that the active phospho-Thr774 form of PKN1 is constitutively expressed in CLL but minimally detected in unstimulated healthy donor B cells. Through a screen of 700 kinase inhibitors, we identified two inhibitors, OTSSP167, and XL-228, that inhibited PKN1 in the nanomolar range and induced dose-dependent loss of TRAF1 in RAJI cells. OTSSP167 or XL-228 treatment of primary patient CLL samples led to a reduction in TRAF1, pNF-κB p65, pS6, pERK, Mcl-1 and Bcl-2 proteins, and induction of activated caspase-3. OTSSP167 synergized with venetoclax in inducing CLL death, correlating with loss of TRAF1, Mcl-1, and Bcl-2. Although correlative, these findings suggest the PKN1-TRAF1 signaling axis as a potential new target for CLL. These findings also suggest the use of the orally available inhibitor OTSSP167 in combination treatment with venetoclax for TRAF1 overexpressing CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Naphthyridines/therapeutic use , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction , TNF Receptor-Associated Factor 1/genetics
14.
J Med Chem ; 64(15): 11129-11147, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34291633

ABSTRACT

Both previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6. From these hits, we developed potent (IC50 < 10 nM) analogues with selectivity against off-target kinases. Further optimization led to the discovery of an analogue (18) with an IC50 value of 6 nM against GRK6 and selectivity against a panel of 85 kinases. Compound 18 has potent cellular target engagement and antiproliferative activity against MM cells and is synergistic with bortezomib. In summary, we demonstrate that targeting GRK6 with small molecule inhibitors represents a promising approach for MM and identify 18 as a novel, potent, and selective GRK6 inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , G-Protein-Coupled Receptor Kinases/antagonists & inhibitors , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G-Protein-Coupled Receptor Kinases/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
15.
Nat Commun ; 12(1): 4496, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301934

ABSTRACT

Leiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Genomics/methods , Leiomyosarcoma/genetics , Muscle, Smooth/metabolism , Adult , Aged , Aged, 80 and over , Clonal Evolution , Cohort Studies , Female , Humans , Leiomyosarcoma/classification , Leiomyosarcoma/diagnosis , Male , Middle Aged , Muscle, Smooth/pathology , Mutation , RNA-Seq/methods , Survival Analysis
16.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33591753

ABSTRACT

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Subject(s)
Benzodiazepinones/pharmacology , Enzyme Inhibitors/pharmacology , Nuclear Proteins/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Allosteric Regulation , Allosteric Site , Benzodiazepinones/chemical synthesis , Benzodiazepinones/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , HEK293 Cells , Humans , Nuclear Proteins/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism , Stereoisomerism
17.
J Med Chem ; 64(3): 1584-1592, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33522809

ABSTRACT

Increased activity of the lysine methyltransferase NSD2 driven by translocation and activating mutations is associated with multiple myeloma and acute lymphoblastic leukemia, but no NSD2-targeting chemical probe has been reported to date. Here, we present the first antagonists that block the protein-protein interaction between the N-terminal PWWP domain of NSD2 and H3K36me2. Using virtual screening and experimental validation, we identified the small-molecule antagonist 3f, which binds to the NSD2-PWWP1 domain with a Kd of 3.4 µM and abrogates histone H3K36me2 binding to the PWWP1 domain in cells. This study establishes an alternative approach to targeting NSD2 and provides a small-molecule antagonist that can be further optimized into a chemical probe to better understand the cellular function of this protein.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Computer Simulation , Crystallography, X-Ray , Drug Discovery/methods , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Histone-Lysine N-Methyltransferase/drug effects , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Domains , Repressor Proteins/drug effects , Small Molecule Libraries , Structure-Activity Relationship
18.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33476303

ABSTRACT

TAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase I clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown. Here, we conducted a genome-wide CRISPR/Cas9 knockout screen in acute myeloid leukemia (AML) cells in the presence of TAK-243 to identify genes essential for TAK-243 action. We identified BEN domain-containing protein 3 (BEND3), a transcriptional repressor and a regulator of chromatin organization, as the top gene whose knockout confers resistance to TAK-243 in vitro and in vivo. Knockout of BEND3 dampened TAK-243 effects on ubiquitylation, proteotoxic stress, and DNA damage response. BEND3 knockout upregulated the ATP-binding cassette efflux transporter breast cancer resistance protein (BCRP; ABCG2) and reduced the intracellular levelsof TAK-243. TAK-243 sensitivity correlated with BCRP expression in cancer cell lines of different origins. Moreover, chemical inhibition and genetic knockdown of BCRP sensitized intrinsically resistant high-BCRP cells to TAK-243. Thus, our data demonstrate that BEND3 regulates the expression of BCRP for which TAK-243 is a substrate. Moreover, BCRP expression could serve as a predictor of TAK-243 sensitivity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Drug Resistance, Neoplasm , Enzyme Inhibitors , Gene Expression Regulation, Neoplastic , Leukemia, Myeloid, Acute , Neoplasm Proteins/metabolism , Pyrazoles , Pyrimidines , Repressor Proteins/metabolism , Sulfides , Sulfonamides , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Genome , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mice , Neoplasm Proteins/genetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Repressor Proteins/genetics , Sulfides/pharmacology , Sulfides/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
19.
BMC Cancer ; 20(1): 724, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32758183

ABSTRACT

BACKGROUND: Breast tumor initiating cells (BTIC) are stem-like cells that initiate and sustain tumor growth, and drive disease recurrence. Identifying therapies targeting BTIC has been hindered due primarily to their scarcity in tumors. We previously reported that BTIC frequency ranges between 15% and 50% in multiple mammary tumors of 3 different transgenic mouse models of breast cancer and that this frequency is maintained in tumor cell populations cultured in serum-free, chemically defined media as non-adherent tumorspheres. The latter enabled high-throughput screening of small molecules for their capacity to affect BTIC survival. Antagonists of several serotonin receptors (5-HTRs) were among the hit compounds. The most potent compound we identified, SB-699551, selectively binds to 5-HT5A, a Gαi/o protein coupled receptor (GPCR). METHODS: We evaluated the activity of structurally unrelated selective 5-HT5A antagonists using multiple orthogonal assays of BTIC frequency. Thereafter we used a phosphoproteomic approach to uncover the mechanism of action of SB-699551. To validate the molecular target of the antagonists, we used the CRISPR-Cas9 gene editing technology to conditionally knockout HTR5A in a breast tumor cell line. RESULTS: We found that selective antagonists of 5-HT5A reduced the frequency of tumorsphere initiating cells residing in breast tumor cell lines and those of patient-derived xenografts (PDXs) that we established. The most potent compound among those tested, SB-699551, reduced the frequency of BTIC in ex vivo assays and acted in concert with chemotherapy to shrink human breast tumor xenografts in vivo. Our phosphoproteomic experiments established that exposure of breast tumor cells to SB-699551 elicited signaling changes in the canonical Gαi/o-coupled pathway and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis. Moreover, conditional mutation of the HTR5A gene resulted in the loss of tumorsphere initiating cells and BTIC thus mimicking the effect of SB-699551. CONCLUSIONS: Our data provide genetic, pharmacological and phosphoproteomic evidence consistent with the on-target activity of SB-699551. The use of such agents in combination with cytotoxic chemotherapy provides a novel therapeutic approach to treat breast cancer.


Subject(s)
Biphenyl Compounds/pharmacology , Breast Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology , Animals , Antineoplastic Agents/pharmacology , Biphenyl Compounds/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/drug effects , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Gene Knockout Techniques , Guanidines/chemistry , Guanidines/metabolism , Guanidines/pharmacology , Heterografts , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Proteomics , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Serotonin/genetics , Serotonin Antagonists/chemistry , Serotonin Antagonists/metabolism
20.
J Med Chem ; 63(17): 10061-10085, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787083

ABSTRACT

There are currently no effective chemotherapeutic drugs approved for the treatment of diffuse intrinsic pontine glioma (DIPG), an aggressive pediatric cancer resident in the pons region of the brainstem. Radiation therapy is beneficial but not curative, with the condition being uniformly fatal. Analysis of the genomic landscape surrounding DIPG has revealed that activin receptor-like kinase-2 (ALK2) constitutes a potential target for therapeutic intervention given its dysregulation in the disease. We adopted an open science approach to develop a series of potent, selective, orally bioavailable, and brain-penetrant ALK2 inhibitors based on the lead compound LDN-214117. Modest structural changes to the C-3, C-4, and C-5 position substituents of the core pyridine ring afforded compounds M4K2009, M4K2117, and M4K2163, each with a superior potency, selectivity, and/or blood-brain barrier (BBB) penetration profile. Robust in vivo pharmacokinetic (PK) properties and tolerability mark these inhibitors as advanced preclinical compounds suitable for further development and evaluation in orthotopic models of DIPG.


Subject(s)
Activin Receptors, Type I/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Diffuse Intrinsic Pontine Glioma/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Female , HEK293 Cells , Humans , Male , Mice, SCID , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...